Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Am J Transplant ; 23(6): 744-758, 2023 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2286568

RESUMEN

Kidney transplant recipients (KTRs) show poorer response to SARS-CoV-2 mRNA vaccination, yet response patterns and mechanistic drivers following third doses are ill-defined. We administered third monovalent mRNA vaccines to n = 81 KTRs with negative or low-titer anti-receptor binding domain (RBD) antibody (n = 39 anti-RBDNEG; n = 42 anti-RBDLO), compared with healthy controls (HCs, n = 19), measuring anti-RBD, Omicron neutralization, spike-specific CD8+%, and SARS-CoV-2-reactive T cell receptor (TCR) repertoires. By day 30, 44% anti-RBDNEG remained seronegative; 5% KTRs developed BA.5 neutralization (vs 68% HCs, P < .001). Day 30 spike-specific CD8+% was negative in 91% KTRs (vs 20% HCs; P = .07), without correlation to anti-RBD (rs = 0.17). Day 30 SARS-CoV-2-reactive TCR repertoires were detected in 52% KTRs vs 74% HCs (P = .11). Spike-specific CD4+ TCR expansion was similar between KTRs and HCs, yet KTR CD8+ TCR depth was 7.6-fold lower (P = .001). Global negative response was seen in 7% KTRs, associated with high-dose MMF (P = .037); 44% showed global positive response. Of the KTRs, 16% experienced breakthrough infections, with 2 hospitalizations; prebreakthrough variant neutralization was poor. Absent neutralizing and CD8+ responses in KTRs indicate vulnerability to COVID-19 despite 3-dose mRNA vaccination. Lack of neutralization despite CD4+ expansion suggests B cell dysfunction and/or ineffective T cell help. Development of more effective KTR vaccine strategies is critical. (NCT04969263).


Asunto(s)
COVID-19 , Trasplante de Riñón , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/prevención & control , Trasplante de Riñón/efectos adversos , ARN Mensajero/genética , Receptores de Trasplantes , Vacunas de ARNm , Receptores de Antígenos de Linfocitos T , Anticuerpos Antivirales
2.
Am J Transplant ; 23(3): 423-428, 2023 03.
Artículo en Inglés | MEDLINE | ID: covidwho-2176080

RESUMEN

Neutralizing antibody (nAb) responses are attenuated in solid organ transplant recipients (SOTRs) despite severe acute respiratory syndrome-coronavirus-2 vaccination. Preexposure prophylaxis (PrEP) with the antibody combination tixagevimab and cilgavimab (T+C) might augment immunoprotection, yet in vitro activity and durability against Omicron sublineages BA.4/5 in fully vaccinated SOTRs have not been delineated. Vaccinated SOTRs, who received 300 + 300 mg T+C (ie, full dose), within a prospective observational cohort submitted pre and postinjection samples between January 31, 2022, and July 6, 2022. The peak live virus nAb was measured against Omicron sublineages (BA.1, BA.2, BA.2.12.1, and BA.4), and surrogate neutralization (percent inhibition of angiotensin-converting enzyme 2 receptor binding to full length spike, validated vs live virus) was measured out to 3 months against sublineages, including BA.4/5. With live virus testing, the proportion of SOTRs with any nAb increased against BA.2 (47%-100%; P < .01), BA.2.12.1 (27%-80%; P < .01), and BA.4 (27%-93%; P < .01), but not against BA.1 (40%-33%; P = .6). The proportion of SOTRs with surrogate neutralizing inhibition against BA.5, however, fell to 15% by 3 months. Two participants developed mild severe acute respiratory syndrome-coronavirus-2 infection during follow-up. The majority of fully vaccinated SOTRs receiving T+C PrEP achieved BA.4/5 neutralization, yet nAb activity commonly waned by 3 months postinjection. It is critical to assess the optimal dose and interval of T+C PrEP to maximize protection in a changing variant climate.


Asunto(s)
COVID-19 , Receptores de Trasplantes , Humanos , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales
3.
mSphere ; 8(1): e0052222, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: covidwho-2193485

RESUMEN

Industrial livestock operations (ILOs), particularly processing facilities, emerged as centers of coronavirus disease 2019 (COVID-19) outbreaks in spring 2020. Confirmed cases of COVID-19 underestimate true prevalence. To investigate the prevalence of antibodies against SARS-CoV-2, we enrolled 279 participants in North Carolina from February 2021 to July 2022: 90 from households with at least one ILO worker (ILO), 97 from high-ILO intensity areas (ILO neighbors [ILON]), and 92 from metropolitan areas (metro). More metro (55.4%) compared to ILO (51.6%) and ILON participants (48.4%) completed the COVID-19 primary vaccination series; the median completion date was more than 4 months later for ILO compared to ILON and metro participants, although neither difference was statistically significant. Participants provided a saliva swab we analyzed for SARS-CoV-2 IgG using a multiplex immunoassay. The prevalence of infection-induced IgG (positive for nucleocapsid and receptor binding domain) was higher among ILO (63%) than ILON (42.9%) and metro (48.7%) participants (prevalence ratio [PR], 1.38; 95% confidence interval [CI], 1.06 to 1.80; reference category ILON and metro combined). The prevalence of infection-induced IgG was also higher among ILO participants than among an Atlanta health care worker cohort (PR, 2.45; 95% CI, 1.80 to 3.33) and a general population cohort in North Carolina (PRs, 6.37 to 10.67). The infection-induced IgG prevalence increased over the study period. Participants reporting not masking in public in the past 2 weeks had higher infection-induced IgG prevalence (78.6%) than participants reporting masking (49.3%) (PR, 1.59; 95% CI, 1.19 to 2.13). Lower education, more people per bedroom, Hispanic/Latino ethnicity, and more contact with people outside the home were also associated with higher infection-induced IgG prevalence. IMPORTANCE Few studies have measured COVID-19 seroprevalence in North Carolina, especially among rural, Black, and Hispanic/Latino communities that have been heavily affected. Antibody results show high rates of COVID-19 among industrial livestock operation workers and their household members. Antibody results add to evidence of health disparities related to COVID-19 by socioeconomic status and ethnicity. Associations between masking and physical distancing with antibody results also add to evidence of the effectiveness of these prevention strategies. Delays in the timing of receipt of COVID-19 vaccination reinforce the importance of dismantling vaccination barriers, especially for industrial livestock operation workers and their household members.


Asunto(s)
COVID-19 , Animales , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Ganado , Prevalencia , North Carolina/epidemiología , Estudios Seroepidemiológicos , Vacunas contra la COVID-19 , Anticuerpos Antivirales , Inmunoglobulina G
4.
JCI Insight ; 7(9)2022 05 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1765225

RESUMEN

BackgroundSome clinical features of severe COVID-19 represent blood vessel damage induced by activation of host immune responses initiated by the coronavirus SARS-CoV-2. We hypothesized autoantibodies against angiotensin-converting enzyme 2 (ACE2), the SARS-CoV-2 receptor expressed on vascular endothelium, are generated during COVID-19 and are of mechanistic importance.MethodsIn an opportunity sample of 118 COVID-19 inpatients, autoantibodies recognizing ACE2 were detected by ELISA. Binding properties of anti-ACE2 IgM were analyzed via biolayer interferometry. Effects of anti-ACE2 IgM on complement activation and endothelial function were demonstrated in a tissue-engineered pulmonary microvessel model.ResultsAnti-ACE2 IgM (not IgG) autoantibodies were associated with severe COVID-19 and found in 18/66 (27.2%) patients with severe disease compared with 2/52 (3.8%) of patients with moderate disease (OR 9.38, 95% CI 2.38-42.0; P = 0.0009). Anti-ACE2 IgM autoantibodies were rare (2/50) in non-COVID-19 ventilated patients with acute respiratory distress syndrome. Unexpectedly, ACE2-reactive IgM autoantibodies in COVID-19 did not undergo class-switching to IgG and had apparent KD values of 5.6-21.7 nM, indicating they are T cell independent. Anti-ACE2 IgMs activated complement and initiated complement-binding and functional changes in endothelial cells in microvessels, suggesting they contribute to the angiocentric pathology of COVID-19.ConclusionWe identify anti-ACE2 IgM as a mechanism-based biomarker strongly associated with severe clinical outcomes in SARS-CoV-2 infection, which has therapeutic implications.FUNDINGBill & Melinda Gates Foundation, Gates Philanthropy Partners, Donald B. and Dorothy L. Stabler Foundation, and Jerome L. Greene Foundation; NIH R01 AR073208, R01 AR069569, Institutional Research and Academic Career Development Award (5K12GM123914-03), National Heart, Lung, and Blood Institute R21HL145216, and Division of Intramural Research, National Institute of Allergy and Infectious Diseases; National Science Foundation Graduate Research Fellowship (DGE1746891).


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Autoanticuerpos , Células Endoteliales , Humanos , Inmunoglobulina M , SARS-CoV-2
5.
Biosens Bioelectron ; 195: 113656, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1432990

RESUMEN

Serological tests play an important role in the fight against Coronavirus Disease 2019 (COVID-19), including monitoring the dynamic immune response after vaccination, identifying past infection and determining community infection rate. Conventional methods for serological testing, such as enzyme-linked immunosorbent assays and chemiluminescence immunoassays, provide reliable and sensitive antibody detection but require sophisticated laboratory infrastructure and/or lengthy assay time. Conversely, lateral flow immunoassays are suitable for rapid point-of-care tests but have limited sensitivity. Here, we describe the development of a rapid and sensitive magnetofluidic immuno-PCR platform that can address the current gap in point-of-care serological testing for COVID-19. Our magnetofluidic immuno-PCR platform automates a magnetic bead-based, single-binding, and one-wash immuno-PCR assay in a palm-sized magnetofluidic device and delivers results in ∼30 min. In the device, a programmable magnetic arm attracts and transports magnetically-captured antibodies through assay reagents pre-loaded in a companion plastic cartridge, and a miniaturized thermocycler and a fluorescence detector perform immuno-PCR to detect the antibodies. We evaluated our magnetofluidic immuno-PCR with 108 clinical serum/plasma samples and achieved 93.8% (45/48) sensitivity and 98.3% (59/60) specificity, demonstrating its potential as a rapid and sensitive point-of-care serological test for COVID-19.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Anticuerpos Antivirales , Prueba Serológica para COVID-19 , Prueba de COVID-19 , Humanos , Sistemas de Atención de Punto , Pruebas en el Punto de Atención , SARS-CoV-2 , Sensibilidad y Especificidad
7.
J Clin Microbiol ; 59(1)2020 12 17.
Artículo en Inglés | MEDLINE | ID: covidwho-991751

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of an ongoing pandemic that has infected over 36 million and killed over 1 million people. Informed implementation of government public health policies depends on accurate data on SARS-CoV-2 immunity at a population scale. We hypothesized that detection of SARS-CoV-2 salivary antibodies could serve as a noninvasive alternative to serological testing for monitoring of SARS-CoV-2 infection and seropositivity at a population scale. We developed a multiplex SARS-CoV-2 antibody immunoassay based on Luminex technology that comprised 12 CoV antigens, mostly derived from SARS-CoV-2 nucleocapsid (N) and spike (S). Saliva and sera collected from confirmed coronavirus disease 2019 (COVID-19) cases and from the pre-COVID-19 era were tested for IgG, IgA, and IgM to the antigen panel. Matched saliva and serum IgG responses (n = 28) were significantly correlated. The salivary anti-N IgG response resulted in the highest sensitivity (100%), exhibiting a positive response in 24/24 reverse transcription-PCR (RT-PCR)-confirmed COVID-19 cases sampled at >14 days post-symptom onset (DPSO), whereas the salivary anti-receptor binding domain (RBD) IgG response yielded 100% specificity. Temporal kinetics of IgG in saliva were consistent with those observed in blood and indicated that most individuals seroconvert at around 10 DPSO. Algorithms employing a combination of the IgG responses to N and S antigens result in high diagnostic accuracy (100%) by as early as 10 DPSO. These results support the use of saliva-based antibody testing as a noninvasive and scalable alternative to blood-based antibody testing.


Asunto(s)
Anticuerpos Antivirales/análisis , Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , SARS-CoV-2/inmunología , Saliva/inmunología , Prueba de Ácido Nucleico para COVID-19/métodos , Proteínas de la Nucleocápside de Coronavirus/inmunología , Femenino , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Masculino , Glicoproteína de la Espiga del Coronavirus/inmunología
8.
Science ; 370(6520)2020 11 27.
Artículo en Inglés | MEDLINE | ID: covidwho-809284

RESUMEN

Understanding humoral responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for improving diagnostics, therapeutics, and vaccines. Deep serological profiling of 232 coronavirus disease 2019 (COVID-19) patients and 190 pre-COVID-19 era controls using VirScan revealed more than 800 epitopes in the SARS-CoV-2 proteome, including 10 epitopes likely recognized by neutralizing antibodies. Preexisting antibodies in controls recognized SARS-CoV-2 ORF1, whereas only COVID-19 patient antibodies primarily recognized spike protein and nucleoprotein. A machine learning model trained on VirScan data predicted SARS-CoV-2 exposure history with 99% sensitivity and 98% specificity; a rapid Luminex-based diagnostic was developed from the most discriminatory SARS-CoV-2 peptides. Individuals with more severe COVID-19 exhibited stronger and broader SARS-CoV-2 responses, weaker antibody responses to prior infections, and higher incidence of cytomegalovirus and herpes simplex virus 1, possibly influenced by demographic covariates. Among hospitalized patients, males produce stronger SARS-CoV-2 antibody responses than females.


Asunto(s)
COVID-19/inmunología , Mapeo Epitopo , Epítopos/inmunología , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Formación de Anticuerpos , COVID-19/sangre , Prueba Serológica para COVID-19 , Reacciones Cruzadas , Microscopía por Crioelectrón , Epítopos/química , Epítopos/genética , Femenino , Humanos , Masculino , Conformación Proteica , Seroconversión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA